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SO(2,l) Lie algebra, the Jacobi matrix and the scattering 
states of the Morse oscillator 

P C Ojha t  
Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, 1L 
60637. USA 

Received 2 June 1987 

Abstract. Previous work exploring the connection between SO(2, 1) Lie algebra and the 
Jacobi-matrix method for scattering is extended to the Morse potential. Regular and 
irregular solutions of the three-term recursion associated with the Jacobi matrix are specified 
by their asymptotic behaviour and closed-form expressions in terms of generalised hyper- 
geometric functions are obtained. This example further illustrates the connection between 
scattering theory and orthogonal polynomials. 

1. Introduction 

In the past fifteen years or so, it has emerged that the properties of the continuum 
states of atoms and molecules can be studied by expanding the wavefunction in a set 
of square-integrable functions. In the general case, the trick is to recursively generate 
a basis set in which the Hamiltonian matrix is tridiagonal. The basis set is formally 
complete, the Hamiltonian matrix is infinite, and its spectrum is continuous over a 
range of eigenvalues. In practice, the basis set is truncated, the continuous spectrum 
is discretised and a convergent expansion to the quantity of interest (e.g., a transition- 
matrix element) is constructed. This method essentially amounts to solving the mathe- 
matical ‘problem of moments’ and  it has been used extensively to study photoionisation 
of molecules (Langhoff 1983). Particular solvable cases, where the Hamiltonian H,, is 
tridiagonal in a known complete basis set and  the matrix can be diagonalised analyti- 
cally, assume special importance, not only as illustrations of the method but also as 
the framework for calculating the scattering states of H = H,,+ V, where V is a 
short-range interaction in the sense that in its matrix representation only a finite 
submatrix is non-zero. The problem of specifying the scattering states of H by the 
coefficients of their expansion in the basis set then reduces to that of solving a finite 
matrix equation. This is the Jacobi-matrix method for scattering (Heller and  Yamani 
1974, Yamani and Fishman 1975). 

A parallel development began with the observation that the bound spectrum of 
some of the classic problems of quantum mechanics (harmonic oscillator, hydrogen 
atom, Morse oscillator) can be calculated very elegantly by using the commutation 
relations of operators. Is it also possible to calculate the scattering phase shift algebra- 
ically, at  least for some solvable model problems? The answer is in the affirmative 
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876 P C Ojha 

(Alhassid and  Wu 1984, Alhassid et a1 1983, 1984, 1986). The S O ( 2 , l )  Lie algebra, 
which is also the (bound) spectrum-generating algebra for the problems listed above, 
plays a central role. It has been discovered that an  algebraic determination of the 
phase shift is possible when the Hamiltonian is a functional of the Casimir invariant 
of the algebra. (Both Coulomb interaction and  Morse potential fall in this category.) 
The group theoretical analogue of the examination of the asymptotic form of the 
coordinate-space wavefunction is the contraction of the SO(2, 1) Lie algebra to the 
Euclidean algebra E2 of the generators of translations and rotations of the plane. The 
S matrix is calculated from the corresponding passage from the appropriate representa- 
tion of the SO(2, 1) Lie algebra to that of E ? .  

In fact the Jacobi-matrix method is also intimately connected with the SO(2, 1)  Lie 
algebra (Ojha 1986, 1987). In the two cases considered so far-Coulomb Hamiltonian 
diagonalised in a Sturmian basis and kinetic energy operator diagonalised in a basis 
of harmonic oscillator states-it turns out that the basis set constitutes a unitary 
irreducible representation of the SO(2, 1) Lie algebra and the Hamiltonian is a linear 
combination of its generators. One thus diagonalises a linear combination of the 
compact and  non-compact generators in a basis in which the compact generator is 
diagonal. The scattering phaseshift is then extracted from the asymptotic behaviour 
of the expansion coefficients. These examples illustrate the general connection between 
scattering theory and polynomials orthogonal on a segment of the real line (Case 1974, 
Geronimo and Case 1979, 1980). 

In this paper, I extend previous work and explore the connection between SO(2, 1) 
Lie algebra and the Jacobi-matrix treatment of the scattering states of the Morse 
oscillator. The specific realisation of the algebra which is required and  basis in  which 
its compact generator is diagonal is introduced in Q 2. The free-particle and Morse- 
oscillator Hamiltonians are then rewritten in terms of the generators of the algebra. 
The resulting three-term recursion for the free particle is solved in § 3 and  that for the 
Morse oscillator in § 4. The free-particle recursion has been considered before in 
a different context and  its regular solution leads to Pollaczek polynomials. The 
polynomials arising from the Morse oscillator recursion d o  not seem to have been 
studied before and it may be appropriate to call them 'Morse polynomials'. Some 
remarks concerning the failure of the present treatment to determine the scattering 
phase shift of the Morse potential algebraically are offered in § 5 .  A brief description 
of the standard solution of the Schrodinger equation is given in the appendix. 

2. Jacobi-matrix representation of the Hamiltonian 

Consider the one-dimensional Hamiltonian 
1 

2m 
H = - - p : + V , ( x )  

where 

V , ( x )  = A e-2x - B e-' 

( 2 . 1 ~ )  

(2 . lb)  

is the Morse potential. Transform the independent variable to z =e-'. The resulting 
Hamiltonian 

(2.2) 

is then Hermitian over the interval 0 z < CC with weight l /z .  



SO(2, 1 )  Lie algebra, Jacobi matrix and Morse oscillator 877 

Next consider the following realisation of the SO(2,  1) Lie algebra: 

d 
T2 = -iz- 

dz 

1 d' P2 PI T,=--zz,+-+-z.  
2 P 1  dz 22 2 

( 2 . 3 ~ )  

( 2 . 3 b )  

(2 .3c )  

Here P ,  and P 2  are real parameters subject only to the condition P I ,  p 2 > 0 .  The 
commutation relations 

[TI,  7-,1=-iT, [T,, T31=iT1 [T3, T11=iT2 (2.4) 

T ' = T ' - T ' - T : = ~  3 1 - 1 2 .  p (2 .5)  

are easily verified. The Casimir invariant is just 

Also note that T2 = - p x .  
The Sturmian basis set, 

where t (  t + 1 )  = PIP2 and L ~ , ' + ' ( 2 P 1 z )  is ageneralised Laguerre polynomial?, constitutes 
a 9 ' ( r )  representation of the algebra ( 2 . 3 ) .  ( I  will occasionally denote the vth basis 
function by the ket It, q = v +  t +  l).) The standard action of the operators T3 and 
T, = Tl*iT2 on the basis functions is also easily verified from the properties of 
generalised Laguerre polynomials: 

( 2 . 7 ~ )  

(2.7 b )  

The point in introducing this Lie algebra (2 .4 )  is that both the kinetic energy 
operator and the Morse potential are simple functions of the generators of the algebra 

and 

The task of solving the eigenvalue equation for the free particle 

or equivalently 

T*lsDj = +klG) 

(2 .8b )  

( 2 . 9 a )  

(2 .9b)  

+ As far as possible, I will follow the notation of Abramowitz and Stegun (1970) for all the special functions 
and orthogonal polynomials. 
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was accomplished previously in a different context (Ojha 1986) and the results are 
recapitulated in 0 3. For arbitrary values of p,(>O),  the Hamiltonian H = H,+ V ,  is 
quadratic in the raising and lowering operators T,. Its matrix representation in the 
basis of (2.6) is therefore quindiagonal. To obtain a tridiagonal matrix, choose 
p ,  = (2mA)"'. Then the resulting eigenvalue equation 

(2.10) 

is linear in T,. On expanding the function 14) in the basis set (It, 9) ,  9 = t + l ,  
t + 2, . . . , CO}, one obtains a three-term recursion relation for the expansion coefficients. 
Appropriate regular and irregular solutions of this recursion are obtained in § 4. 

[2T: - T Z  - 7; TI - TI T3 - T (  7-7 - TI) - E ] / 4 )  = 0 

3. States of the free particle 

Consider the eigenvalue equation 

P x l 4 )  = -7-214) = kl+) ( 3 . 1 ~ )  

and expand the wavefunction I+) in the basis set {It, v +  t + l),  v = 0, 1,2,  . . . , CO}: 

cc 

I $ ) =  a&, Y+f+l ) .  
"=O 

(3 . lb)  

It follows from the standard action of T2 on It, v + t + 1) that the expansion coefficients 
a, satisfy the recursion relation 

(3.2) 
There are two linearly independent solutions of the recursion which are given in terms 
of gamma functions and Gauss hypergeometric functions: 

[ v(v+2 t  + I ) ] " ~ U ~ , - ~  +i2ka, - [(v+ 1 ) ( ~ + 2 t  +2)]1/za,+l = 0. 

[ r ( v + i ) r ( v + 2 t + 2 ) ] 1 / 2  
a t (  k )  = 2F1( t + 1 - ik, - t - ik;  v + t + 2 - ik; i) 

l - ( v +  t + 2  - ik)  (3.3a) 

and 

Asymptotically, 

aT,(k) - ( ~ + t + i ) - ' / ~ + ' ~  (3.4a) 
Y ' T  

and 

(3.4b) 

The regular solution of the recursion, specified by the condition 

S _ , ( k ) = O  (3.57) 

is given by a linear combination of a t  and a! where the coefficient multiplying a t ' ( a l )  
is ( v  + I ) " ~ (  Y + 2t + 2)'"at(-a!)/, = I :  

[ r ( 2 t  + 2)]II2( 2 - 1 ~  2ik 
a!,'(k)+ a! , (k ) ) .  (3.5b) 2' r( t + 1 - ik) l-( r + 1 + ik )  

9°C k )  = 
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From standard properties of the gamma function and  the Gauss hypergeometric 
function, it can be shown that 

Naturally, this is a polynomial in k. In fact, these are the (normalised) Pollaczek 
polynomials (Erdelyi 1953, Ojha 1986): 

which are orthonormal over the interval -cc < k < cc with weight 

L 
W(k;  7r/2) = -\I‘(t+ l+ik)l:. 

2rrr(2t  + 2 )  

Thus 

dk[PL”(k; a /2)]* W(k ;  r r /2)P: l ‘ (k ;  ~ / 2 )  = 6,, 

Obviously, the regular solution in (3.5c), now rewritten as 

S, ,(k) = 2 e’;rr”2P:+’(k; ~ / 2 )  
is un-normalised but it can be normalised in the sense of 

s c S:(k,)S”(k,) = S(kl -U 
” = O  

by multiplying (3.7a) by :( W(k;  77/2))”?. Then the normalised 
the recursion is 

(3.6a) 

(3.6b) 

( 3 . 6 ~ )  

(3.7a) 

(3.7b) 

regular solution of 

(3.7c) 

The normalisation of SL,( k)  follows from the completeness relation for Pollaczek 
polynomials: 

X 

W(k;  ~ / 2 )  1 P:(k,; ~ / 2 ) P , ( k * ;  ~ / 2 ) = S ( k , - k , ) .  (3.8) 

Apart from a phase factor, S ,  ( k )  is just the coefficient of the vth basis function in the 
expansion of the plane wave (27r-I  ’elk\-. If required, this phase factor may be 
obtained from the Fourier transform of &,(x). 

u = o  

The asymptotic behaviour of S , ( k )  is obtained from (3.4), (3.56) and ( 3 . 7 ~ ) :  

1 
elrrvi2 cos { f v v  - k In[2(v + t + l ) ]  + arg r( t + 1 + ik)}. ( v + t + l ] ” ’  

S,(k) ”-a2 - ( : ) ‘ I 2  

(3.91 
The required linearly independent solutions of the eigenvalue equation 
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are S # , ( * k ) .  The phase shift due to a short-range interaction V ( x )  can be calculated 
along the lines of Heller and Yamani (1974) with a slight modifications acknowledging 
the fact that the matrix representation of the kinetic energy operator in the basis of 
(2.6) is block tridiagonal where each block is a diagonal 2 x 2 matrix. 

4. Scattering states of the Morse oscillator 

Expansion of the wavefunction in the eigenvalue equation (2.10) as 

cr 

I+)= c b ” k  v + t + l )  
r , = O  

leads to the following three-term recursion for expansion coefficients: 

( 4 . 1 ~ )  

( V +  t + + - + T I ) [  V (  ~ + 2 t  + I)]1’2bV-l + [ k ‘ +  t (  t + 1) + T (  L/ + t + 1) -2( v + t + l)*]b,, 

+ ( Y +  t + $ - $ T ) [ (  V +  I ) (  Y +  I ) (  v+2t+2)]”*by+l = O .  (4 . lb)  

This recursion has been considered previously by Broad (1982). He made the further 
assumption that t ’$77 - $ -  I? where N is the largest integer less than :+$T.  This 
separates the first f i x  N block corresponding to the bound spectrum of the oscillator 
from the remaining infinite matrix. The solutions of (4.lb) for va then represent 
the scattering states. 

This assumption is unnecessarily restrictive and I d o  not make it here. The solutions 
obtained in the rest of this section are therefore more general and contain the one 
given by Broad. 

It can be verified from (4.4) of Bailey (1954) that the following functions containing 
the generalised hypergeometric functions 3Fz(a,  b, c; d, e; 1) do  indeed satisfy the 
recursion (4.1 b): 

[r( v +  i ) r (  v+2t+2)]‘ /*  - t  +ik, t +  1 +ik, $77 + f + i k ;  
1+i2k, v + t + 2 + i k ;  

b t (  k )  = 
r ( v + t + 2 + i k )  

( 4 . 2 ~ )  

and 

b:(k)= bt(-k). (4.2b) 

The standard series expansion of the generalised hypergeometric function 
,F,(a, by c ;  dy e; 1) which appears in (4.2) converges because Re(d + e - a - b - c) > 0 
(Bailey 1935). It follows that asymptotically (as v + a), both the generalised hyper- 
geometric functions tend to their limiting value of 1 and the correction is of order 
( l / v ) .  The asymptotic behaviour of b’ , (k)  and b!,’(k) is then determined by the ratio 
of gamma functions: 

b t (  k )  - ( Y + t + 
v-oc 

( 4 . 3 ~ )  

b:(k) - ( v + t + l ) - l ’ 2 + ’ k  (4.36) 
”-a 

The un-normalised regular solution of the recursion is given by the following linear 
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combination of b l ( k )  and b f , ' ( k ) :  

This can be brought into the form of a polynomial in k' by using the transformation 
for ,F,(a,  b, c; d, e ;  1) given in equation (2) Q 3.2 of Bailey (1935) and  the standard 
properties of gamma functions. Thus 

(4.5) 

This system of polynomials does not seem to have been studied before. Although it 
is possible to calculate their weight distribution from the defining recursion relation, 
I thought it more expedient to calculate it directly from the overlap integral of the 
normalised coordinate-space wavefunction I,!J( x) and the basis functions c#J"( x). The 
normalised solution of the recursion is 

1 Ir(;-;77 + i k ) (  jr(t + 1 + ik)12 
2 277) 

.(( I]}.  (4.6) 
r ( ~ + 2 t + 2 )  -v, t + l + i k ,  t + l - i k ;  

r ( 2 t + 2 ) r ( v +  1)  t - + v + i ,  2 t + 2 ;  

The expression in the first set of parenthesis { } is the square root of the weight for 
the polynomials and  the expression in the second set of parenthesis is the (normalised) 
polynomial subject to the condition P - , ( k 2 )  = 0, P o ( k 2 )  = 1. The asymptotic form of 
S , ( k )  is then obtained from (4.3), (4.4) and (4.6): 

1 
sin[k In( v + t + 1) + arg r( 1 + i2k) 

( v +  r +  1)'12 
S , ( k )  l 1 - T  - (:)I" 

-arg r(;-iV + i k )  - 2  arg r(t+ 1 +ik)].  (4.7) 

The irregular solution of the recursion is defined to equal asymptotically the amplitude 
of the regular solution and  to lead it in phase by ~ / 2 .  This is accomplished by changing 
the - sign in (4.4) to +. After the transformation mentioned following (4.4) and 
multiplication by the scale factor given in the first line of (4.6), I obtain the following 
expression for the normalised irregular solution of the recursion, C,( k ) :  

c o s [ d t  + f + f q ) ]  - COS[T( t +:-+77)] c o s h ( 2 ~ k )  
s i n h ( 2 ~ k )  sin[.rr(t+i-$q)] C,( k )  + i S , ( k )  

1 1 -_ - 
i2k ( 2 ~ r ( 2 t + 2 ) ) ' ' ~  
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Asymptotically, 

cos[k In( v +  t + 1 )  + arg ryi + i2k) 
( v +  1+1)”? 

C , ( k )  Y - -- x ( : ) ] I 2  

-arg + i k )  - 2 arg r(t + I + ik) ] .  (4.9 1 
These two solutions form a base pair in terms of which scattering from an  additional 
short-range interaction can be considered. 

5. Concluding remarks 

One would imagine that a comparison of the asymptotic form of S , ( k )  in (4.7) with 
the asymptotic form of the free-particle wavefunctions (with wavevectors * k )  in (3.9) 
would give the phase shift for scattering from the Morse potential. This is not the 
case. The reason for this seems to be the long-range nature of the Morse potential. 
(Recall that V , ( X )  is unbounded as x +  -w . )  Mathematically, it is reflected in the 
fact that the non-zero matrix elements of V , ( X )  in the basis (2.6) are of the same order 
as the matrix elements of kinetic energy for all basis functions. In fact, exact cancella- 
tion of the matrix elements ( V I  V, (x ) l v  * 2 )  with the corresponding matrix elements of 
kinetic energy (vl(2m)-’pf/v i 2) when PI = (2mA)”’ was necessary to obtain a Jacobi- 
matrix (tridiagonal) representation of the Hamiltonian. Alternatively, the free-particle 
recursion (3.2) is not a limiting case of the Morse oscillator recursion (4.16). 

Nevertheless, the regular and irregular solutions of the Morse oscillator and free 
particle recursions obtained in this article provide the necessary framework for calculat- 
ing the phase shift for scattering from additional short-range interactions and may be 
useful in practical calculation of atom-atom scattering. The characteristic polynomials 
associated with the Morse oscillator (4.6) d o  not seem to have been studied previously. 
It is perhaps appropriate to call them ‘Morse polynomials’. 

Appendix 

The Schrodinger equation 

is essentially Whittaker’s equation (Abramowitz and  Stegun 1970) in the variable 
zl  = (8mA)”’ e-”. The solutions 

(A2a)  + , ( x )  = e-*,/’ z l  I F l ( f F i k - f T ;  1 ~ i 2 k ;  z , )  

represent plane waves at infinity, i.e. 

(cl*(x) X-OC - (8mA)=Ik’* e * ’ k x .  (A261 
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Here k = (2n1E)"~  and  77 = (2mB'/A)"'. Another solution 

+ ( x ) =  ~ ~ " ~ ~ ~ ; ~ , ~ k ( z ~ ~ = e ~ ~ ~ " z ~ ~ ~ ( ~ + i k - ~ 7 7 ;  1+ i2k ;  z,) ( A 3 a )  

satisfies the boundary condition 

lim + ( x )  = 0. ( A 3 b )  
x + a  

Its alternative representation as a linear combination of +,( x ) ,  

determines its asymptotic form as x -+ CC and hence the reflection amplitude 

r ( i 2 k ) r ( i -  ik - 4 ~ )  
r ( - i 2 k ) r ( $ + i k  - ; v )  R ( k )  = (8n1A)-'~ 

References 

Abramowitz M and Stegun 1 1970 Handbook of Mnrhemarical Funcrions (New York: Doter )  
Alhassid Y ,  Engel J and Wu J 1984 Phvs. Rer. Lert 53 17-20 
Alhassid Y, Giirsey F and lachello F 1983 Ann. Phys., NY 148 346-80 
- 1986 Ann. Phys., h'Y 167 181-200 
Alhassid Y and Wu J 1984 Chem. Phys. Lett .  109 81-4 
Bailey W N 1935 Generalised Hypergeomerric Series (Cambridge: Cambridge Unibersit) Press) 
- 1954 Proc. Glasgow Math. Assoc. 2 62-5 
Broad J T 1982 Phys. Rev. A 26 3078-92 
Case K M 1974 J. Math. Phys. 15 2166-74 
Erdelyi A 1953 Higher Transcendenial Functions vol 2 (New York: McGraw-Hill) 
Geronimo J S and Case K M 1979 J. Math. Phjs. 20 299-310 
- 1980 Trans. Am. Math. Soc. 258 467-94 
Helier E J and Yamani H A 1974 Phys. Rev. 4 9 1201-8 
Langhoff P W 1983 Methods in Computarional Molecular Physics ed G H F Diercksen and S Wilson 

Ojha P C 1986 Phys. Rev. A 34 969-77 
- 1987 J.  Math. Phys. 28 392-6 
Yamani H A and Fishman L 1975 J. Math. Phys. 16 410-20 

(Dordrecht: Reidel) 


